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Many simulation practitioners can get more from their analyses by using the statistical theory on design of 

experiments (DOE) developed specifically for exploring computer models.  In this paper, we discuss a 

toolkit of designs for simulationists with limited DOE expertise who want to select a design and an 

appropriate analysis for their computational experiments.  Furthermore, we provide a research agenda 

listing problems in the design of simulation experiments—as opposed to real world experiments—that 

require more investigation.  We consider three types of practical problems:  (1) developing a basic 

understanding of a particular simulation model or system; (2) finding robust decisions or policies; and (3) 

comparing the merits of various decisions or policies.  Our discussion emphasizes aspects that are typical 

for simulation, such as sequential data collection.  Because the same problem type may be addressed 

through different design types, we discuss quality attributes of designs.  Furthermore, the selection of the  

design type depends on the metamodel (response surface) that the analysts tentatively assume; for example, 

more complicated metamodels require more simulation runs.  For the validation of the metamodel 

estimated from a specific design, we present several procedures.   

(Metamodels, Latin Hypercube Sampling, Factorial Designs, Sequential Bifurcation, Robust Design) 
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1.  Introduction  

Design of experiments (DOE) has a rich history, with a raft of both theoretical developments and practical 

applications in many fields.  Success stories abound in agriculture, clinical trials, industrial product design, 

and many other areas.  Yet, despite the impact DOE has had on other fields and the wealth of experimental 

designs that appear in the literature, we feel DOE is not used as widely or effectively in the practice of 

simulation as it should be. We suggest several possible explanations for this phenomenon. 

One reason that DOE does not appear to be part of the standard ‘best practices’ is that many 

simulation analysts have not been convinced of the benefits of DOE.  Instead of using even a simple 

experimental design, many analysts end up making runs to measure performance for only a single system 

specification, or they choose to vary a handful of the many potential factors one-at-a-time.  Their efforts are 

focused on building, rather than analyzing, the simulation model.  DOE benefits can be cast in terms of 

achieving gains (e.g., improving average performance by using DOE instead of a trial-and-error approach 

to finding a good solution) or avoiding losses (e.g., obtaining an ‘optimal’ result with respect to one 

specific environmental setting may lead to disastrous results when implemented). However, many 

simulation practitioners seem unaware of the additional insights that can be gleaned by effective use of 

designs. 

A second possible reason is that papers on DOE research are often found in specialty journals, 

making it difficult for simulation analysts to find out about the variety of methods available.  Many papers 

make modifications that improve efficiency or guard against specific kinds of bias, whereas the bigger 

picture—namely, the setting for which this class of designs is most appropriate—may not be clear to an 

audience more familiar with simulation modeling issues than with statistical DOE.   

The primary reason, however, is that most designs originally developed for real-world 

experimentation have been subsequently adapted for use in simulation studies, rather than developed 

specifically for simulation settings.  Classic DOE textbooks (e.g., Box, Hunter, and Hunter 1978, Box and 

Draper 1987, Montgomery 1991, or Myers and Montgomery 1995) do not focus on the needs of simulation 

analysts, but instead on the practical constraints and implementation issues when conducting real-world 

experiments.  Comprehensive simulation textbooks (Law and Kelton 2001, Banks et al. 2000) do cover a 

broad range of topics.  Though they provide detailed lists of references, they demonstrate DOE by using it 
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on a few simple test problems.  These problems do not stretch the reader's mental framework as to the 

depth and breadth of insights that might be achieved via other designs.  So, studying classic DOE or 

general simulation textbooks familiarizes analysts with only a small subset of potential designs and 

applications; hence analysts are likely to force their problems to fit to a particular design instead of 

identifying the design that best meets their needs.  

Our goal is to bring together, in one place, (1) a discussion of the issues analysts should be aware 

of as they prepare to collect and analyze output from a simulation model, and (2) a guide for selecting 

appropriate designs.  Ideally, the analysts implement the data collection by considering at least some of 

these issues before coding the simulation model.  In particular, we assert that analysts must consider the 

following issues in order to come up with a truly effective analysis: 

•  The type of questions that they (or their clients) would like to answer 

•  Characteristics of their simulation setting 

•  Characteristics of, and constraints imposed on, the simulation data collection process 

•  The need to convey the results effectively 

These issues seem straightforward, but we assert that there are some fundamental problems related to 

designing simulation experiments that are all-to-often overlooked.  We discuss these more fully in the 

sections that follow, with a focus on the practical benefits that can be achieved through DOE.  We believe 

that using a design suited to a particular application is much better than trial-and-error or limiting oneself to 

a simple, small design. Consequently, we should have no trouble convincing practitioners that DOE is a 

useful and necessary part of any analysis of complex simulation systems.  

We do not intend this article to be a tutorial on the details for implementing specific designs, nor 

do we present a historical development of DOE and its application to simulation experiments.  Instead, we 

try to provide an overview of the wide variety of situations that simulation analysts might face, the benefits 

and drawbacks of various designs in these contexts, and links to references for further details.  Our 

overarching goal is to change the mindset of simulation analysts and researchers so they consider DOE to 

be an integral part of any simulation project. 

This overview is based on our joint experience accumulated through contacts with many 

simulation users and researchers over the last few decades.  Where we disagree with current practice and 
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theory, we present both sides to further stimulate reflection and discussion.  Despite the wide variety of 

designs that are available in the literature and—in some cases—statistical or simulation packages, we 

identify some situations where needs are still unmet.  Hopefully, this will motivate further research to 

address these deficiencies.   

In Section 2 we define some terminology, and describe how designing simulation experiments is 

different from designing experiments on real-world systems.  Specifically, we address the types of 

questions that simulation analysts or clients should ask.  We also describe a number of other characteristics 

of simulation settings that cannot easily be handled through more traditional methods, and provide 

examples to motivate the need for designs that cover a wide range of simulation settings.  In Section 3 we 

discuss some characteristics of designs, including criteria that have been used to evaluate their 

effectiveness.  In Section 4 we describe several classes of designs, and assess their strengths and 

weaknesses with respect to their appropriateness for various simulation settings and their design 

characteristics.  In Section 5 we describe ways of checking the assumptions that were made when the 

experimental design was chosen.  We conclude, in Section 6, with a discussion of areas that merit further 

work in order to achieve the potential benefits—either via additional research or via incorporation into 

standard simulation or statistical software packages.  A list with many references enables further study. 

 

2. Why is DOE for Simulation so Different?  

First we define some terminology.  An input or a parameter in simulation is referred to as a factor in DOE.   

A factor can be either qualitative or quantitative.  For example, consider a queueing system simulation.  If 

queue discipline can be either LIFO (last in, first out) or FIFO (first in, first out), this is a qualitative factor.  

The number of servers is a discrete quantitative factor, while the rate for an exponential distribution used to 

model customer inter-arrival times is a continuous quantitative factor.  In any case, each factor can be set to 

two or more values, called factor levels. Typically, factor levels are coded numerically for analysis 

purposes. A scenario or design point is obtained by specifying the complete combination of levels for all 

factors.  We consider stochastic simulations, and hence replicates mean that different Pseudo Random 

Numbers (PRN) are used to simulate the same scenario.  Unless otherwise specified, we will assume that 

these replicates use non-overlapping PRN streams, so that we have Independently Identically Distributed 
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(IID) outputs across replicates—as most statistical methods assume.   The output stream from a single 

replicate is typically much less well behaved. 

Of course, the simulation is itself a model of some real-world (or prospective) system, process, or 

entity.  We can view the simulation code as a black box that implicitly transforms input (such as factor 

level settings and PRN) into output.  A metamodel is a model or approximation of this implicit 

Input/Output (I/O) function (also called response surface, auxiliary model, emulator, etc.).  Often, one 

result of a simulation experiment is the construction of a metamodel.  Hopefully, a parsimonious 

metamodel can be built that describes the relationship between inputs and outputs in much simpler terms 

than the full simulation.  The term ‘metamodel’ is commonly used when most or all of the factors are 

quantitative, and one goal in choosing a particular design might be estimation of certain types of 

metamodels.  We emphasize the following chicken-and-egg problem: once the design is specified and 

simulated, metamodel parameters can be estimated; however, the types of metamodels that the analyst 

desires to investigate should guide the selection of an appropriate design. 

The field of DOE developed as a way to efficiently generate and analyze data from real-world 

experimentation.  In simulation—with its advances in computing power—we are no longer bound by some 

of the constraints that characterize real-world experiments.  This is both an opportunity and a challenge for 

analysts interested in applying DOE to simulation experiments.  Indeed, it is an opportunity to gain much 

more insight into how systems behave, and so provide assistance and information to decision-makers that 

might differ dramatically (in terms of its quantity and nature) from information obtainable using more 

traditional methods.  It is a challenge because it may require a new mindset: we argue that the way 

simulation experiments should be approached is now fundamentally different from the way that real-world 

experiments—involving, say, human subjects—should be approached. 

To illustrate the difference between classic DOE and simulation DOE, we consider the classic 

‘bias mimimizing’ designs.  For example, Donohue, Houck, and Myers (1993)—assuming a first-order 

polynomial metamodel, but at the same time allowing for possible bias caused by second-order effects—

derive designs that minimize that bias.  We, however, argue that, in general, such designs are relevant in 

real-world experiments but not in simulation.  In the former experiments, the analysts must often select a 

design that is executed in ‘one shot’ (say, one growing season in agriculture).  In simulation, however, the 
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data are collected sequentially so the analysts may start with a design for a first-order metamodel; then test 

(validate) the adequacy of that model; and only if they reject that model, they augment their design to a 

design that allows the estimation of second-order effects; also see Kleijnen and Sargent (2000).  

 

2.1  Asking Appropriate Questions   

All simulation texts mention the importance of identifying the ‘right' problem to solve—before constructing 

a simulation and conducting the analysis.  For example, Law and Kelton (2000) state that the first step in a 

simulation study is to formulate the problem and plan the study.  As part of this step, they mention that the 

problem of interest should be stated by the project manager, and that the analysts should specify the overall 

study objectives, specific questions to be answered, performance measures that will be used to evaluate the 

efficacy of different system configurations, system configurations to be modeled, and the time and 

resources required for the study.  They go on to say that experimental design, sensitivity analysis, and 

optimization deal with situations in which there is ‘…less structure in the goal of the simulation study: we 

may want to find out which of possibly many parameters and structural assumptions have the greatest 

effect on a performance measure, or which set of model specifications appear to lead to optimal 

performance.’ (Law and Kelton 2000 Chapter 12). 

We recommend an even broader view, since we have found that the type of question people most 

often think about concerns an a priori single specific performance measure for which they then try to 

estimate or optimize its mean.  Our starting point, however, is three basic goals that simulation analysts and 

their clients may have: 

1.  Developing a basic understanding of a particular simulation model or system. 

2.  Finding robust decisions or policies. 

3.  Comparing the merits of various decisions or policies. 

 

Developing a Basic Understanding 

This goal covers a wide range of questions.  We use this phrase rather than ‘testing hypotheses about factor 

effects’ for the following reason. 
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At one extreme, we may be developing a simulation to gain insight into situations where the 

underlying mechanisms are not well understood, and where real-world data are limited or even non-

existent.  For example, when he was Chief Scientist of the Marine Corps, Dr. Alfred Brandstein posed the 

question ‘When and how should command and control be centralized or decentralized?’  We do not know 

enough about the human mind to program a model for how decisions are made by an individual—let alone 

a group of people!  Yet, ignoring these types of questions because they are ‘too hard’ or ‘inappropriate for 

Operations Research’ is unacceptable: our profession's roots are in finding ways to address difficult, 

interdisciplinary problems.   

One way that similar questions are explored is via the development of agent-based models that try 

to mimic and potentially explain the behavior of complex adaptive systems.  For each agent (e.g., object or 

person), simple ‘rules’ or ‘behaviors’ are specified instead of building detailed prescriptive models to cover 

the interactions among all the agents.  Applications of agent-based simulations have been developed to 

provide insights into the evolution of organisms, behavior of crowds in stadiums, swarming behavior of 

insects, food distribution, and counter-terrorism activities, and more (see Horne and Leonardi 2001 for a 

discussion and examples of very simple agent-based models called ‘distillations’).  For these types of 

simulations, DOE can be an integral part of the modeling development process.  Indeed, we have found 

DOE useful in several ways: it can uncover details into how the model is behaving, cause the modeling 

team to discuss in detail the implications of various model assumptions, help frame questions when we may 

not know ahead of time what questions should be asked, challenge or confirm expectations about the 

direction and relative importance of factor effects, and even uncover problems in the program logic.  Note 

that in such an exploratory environment, it does not make sense to think about using the models to 

numerically estimate factor effects—we are looking for tendencies rather than values. 

At the other extreme, suppose we have a model that we are comfortable using for prediction.  

Then ‘understanding the system’ may result from performing a detailed sensitivity analysis of a particular 

system configuration.  How should we proceed? Searching for effects by varying factors one-at-a-time is an 

ineffective means of gaining understanding for all but the simplest systems.  First, when using this 

approach it is impossible to identify any interaction effects (synergy or redundancy) between two or more 

factors.  Second, even in the case when one-factor-at-a-time sampling can be used to construct an unbiased 
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metamodel, it is inefficient (in terms of the variance of the estimated effects, given the amount of data).  So, 

we assert that—from the outset—the analyst must explore factor effects concurrently in order to understand 

how their simulation model behaves. 

Between these two extremes are situations where the analysts wish to come up with a short list of 

important factors from a long list of potential factors.   Depending on the context, this situation might lead 

to a more thorough investigation of this short list via additional simulation experiments, a decision to 

forego adding enhancements or greater detail to aspects of the model that were not found to be important, 

or the collection of (additional) real-world data in order to home in on appropriate values of (say) 

influential input distributions.  Alternatively, simply identifying the most influential factors (and their 

directional effects on performance) may suffice.  It is also important to know which factors are ‘certainly’ 

unimportant (at least over prespecified factor level ranges) so the users are not bothered by details about 

these factors.  Of course, the importance of factors depends on the experimental domain (or experimental 

frame, as Zeigler 1976 calls it).  For example, oxygen supply is important for missions high in the sky and 

deep under water, but not on land at sea level.  So the clients must supply information on the intended use 

of the simulation, including realistic ranges of the individual factors and limits on the admissible scenarios.  

This includes realistic combinations of factor values; for example, some factor values must add up to 

100%. 

 

Finding Robust Decisions or Policies  

We discuss robust policies, rather than optimal policies, for a reason.  It is certainly true that finding the 

optimal policy for a simulated system is a hot topic, and many methods have been proposed—including 

(alphabetically) Genetic Algorithms, Perturbation Analysis, Response Surface Methodology (RSM), Score 

Functions, Simulated Annealing, and Stochastic Approximation (see Fu 2002 for a discussion of the current 

research and practice of optimization for simulation).  However, all these methods implicitly condition on a 

large number of events or environmental factors.  In practice, the future environment is uncertain so that 

this so-called optimal policy cannot be achieved and may break down completely!  Therefore, we wish to 

find a robust policy—that is, one that works well across a broad range of scenarios.  Such policies have 

also been called ‘satisficing’ (see Simon 1981). 
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To illustrate this problem of classic optimization, consider laying out a small factory, where 

simulation is used to explore the alternatives.  The project manager’s decision factors relate to the type, 

number, position, and buffers associated with machines on the factory floor, as well as any schemes for 

prioritizing or expediting orders.   This is a prototypical problem often analyzed using a simulation 

optimization method—but the result of the ‘optimization’ is conditioned on the assumptions of specific 

(typically assumed independent) distributions for order arrivals, order sizes, machine uptimes, downtimes, 

and service times, and many more.  We argue that the use of the term ‘optimum’ is problematic when the 

probability of all these assumptions holding in practice, even for a limited time, is zero.  Suggesting 

different possible ‘optimal’ layouts for (say) several potential customer order patterns may be singularly 

unhelpful, since the decision-maker cannot control (or perhaps even accurately predict) future order 

patterns. 

In contrast, a robust design approach treats all these assumptions as additional factors when 

running the experiment.  These factors are considered noise factors—rather than decision factors—because 

they are unknown or uncontrollable in the real-world environment.  A robust system or policy is one that 

works well across the range of noise conditions that might be experienced.  Therefore, implementing a 

robust solution is much less likely to result in surprising (unanticipated) results. 

We do not mean to imply that an optimization approach will necessarily yield a bad answer.  If 

sensitivity analysis of the so-called optimal solution indicates that it still performs well (in an absolute 

sense) when realistic departures from these assumptions occur, then the  optimization algorithm has 

identified a solution that is likely to perform well in practice.  If changes in the environment (e.g., different 

patterns of customer orders) impact all potential solutions in the same manner, then the relative merit of 

particular policies does not change.  Nonetheless, there are situations where optimizing and then 

performing sensitivity analysis can lead (and has led) to fundamentally different answers.  For example, a 

military problem of interest these days is finding the ‘optimal’ strategy for defending a high-value target 

(courthouse, church, monument) against a single terrorist.  If the analysts condition on the route the terrorist 

will take approaching the building, then forces will be concentrated along this path.  However, if the 

direction of approach is unknown, then an entirely different strategy (dispersing the protective forces) is 
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much more effective.  Another example is Kleijnen and Gaury (2002)’s study on robustness in production 

planning that was published in the open literature.  

This robust design philosophy is inspired by Taguchi (1980), who pioneered an approach of using 

simple, orthogonal designs as a means of identifying robust product configurations for Toyota.  The results 

improved the quality while lowering the cost of automobiles and component systems, because the chosen 

product designs performed well—despite variations in incoming raw material properties, the manufacturing 

process, and the customers’ environments.  This robust design approach is discussed for simulation 

experiments by Sanchez (2000).  Metamodels can suggest scenarios (i.e., new combinations of factor 

levels) that have not yet been investigated—though the analyst should make confirmatory runs before 

applying the results.  

 

Comparing Decisions or Policies 

We avoid the phrase ‘making predictions about the performance of various decisions or policies’.  

Comparisons may need to be made across a number of dimensions.  Rather than formal statistical methods 

for testing particular factor effects or estimating a specific performance measure, our goal might be to 

provide the decision-maker with detailed descriptive information.  For example, we could present the 

means, variances, percentiles, and any unusual observations (see the box plots in Law and Kelton 2000) for 

several different performance measures, for each of the systems of interest.  These measures could then be 

reported, in conjunction with implementation costs and other considerations not included in the simulation 

model. 

If at least some of the factors are quantitative, and if a performance measure can be clearly stated, 

then it is possible to construct metamodels of the performance that describe the I/O relationships in terms of 

functions of various factor levels.  Here, rather than running an experiment in order to gain insight into how 

the performance is affected by all the factors, we may focus on a few of immediate interest to the decision-

maker. 

However, Ranking and Selection Procedures, Multiple Comparison Procedures (MCP), and 

Multiple Ranking Procedures (MRP) assume that the analysts wish to compare a fixed small number of  

'statistical populations', representing policies or scenarios. There are two basic approaches: (1) how to 
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select, with high probability, a system/decision/policy that is, for practical purposes, the best of the group 

of potential systems; and (2) how to screen the potential systems/decisions/policies to obtain a (random-

size) subset of ‘good’ ones.  Nelson and Goldsman (2002) provide a review of these procedures in 

simulation settings (see also Hsu 1996, Chick and Inoue 2001 and Goldsman et al. 2002).  Many 

procedures have been developed specifically to address some of the characteristics of simulation 

experiments we will discuss in Section 3.  Some assume that all populations are compared with each other, 

whereas other procedures assume comparisons with a standard; see Nelson and Goldsman (2001). 

The three types of questions that we have posed differ from those problems others have suggested 

in the literature.  Sacks et al. (1989) classify problems for simulation analysts as prediction, calibration, and 

optimization.  Kleijnen (1998) distinguishes among sensitivity analysis (global, not local), optimization, 

and validation of simulation models.  These two classifications are related to the ones we use—for 

example, global sensitivity analysis can be used as a way of gaining understanding about a problem—but 

there is not a one-to-one mapping.  For certain classes of simulations, such as many military simulation 

models or hazardous waste disposal models, data are extremely limited or nonexistent.  This means that 

calibrating, optimizing, or predicting with a model may not be a meaningful goal.  In the best tradition of 

scientific discovery, we feel that simulation experiments can, nonetheless, have a role in supporting the 

development of insights (or theories) in these situations.  Dewar et al. (1996) discuss how one can credibly 

use models that cannot be validated due to a dearth of data or changing conditions. 

The above situations contrast sharply with many of the simulation experiments that appear in the 

literature.  These publications assume that a simulation model exists that has already been thoroughly 

validated and verified.  The decision-makers have very specific questions; for example,  about the impact 

on a particular performance measure that results from changing a small number of factors to specified 

(new) values.  The users might hypothesize the nature and strength of a particular factor effect, and the 

analysts' charge is to run the simulation model and collect I/O data in order to test this hypothesis.   

 

2.2  The Simulation Setting 

In this section, we describe some of the characteristics of simulation settings that call for non-traditional 

designs as part of the analyst’s toolkit.   To motivate our discussion, we include practical examples that 
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have been worked on for real clients in the recent past, or are currently under investigation.  These 

examples are drawn from industrial and military applications. 

 

Number of Potential Factors 

In real-world experiments, only a small number of factors are typically varied.  Indeed, it is impractical or 

impossible to attempt to control more than, say, ten factors; many published experiments deal with fewer 

than five.  Academic simulations, such as single-server queuing models, are also severely limited in terms 

of the number of factors that can be varied.  Both application domains obviate the need for a larger set of 

designs in the analyst’s toolkit.   

In contrast, for realistic simulations the list of potential factors is typically very long.  For example, the 

MANA software platform was developed to facilitate construction of simple agent-based models (Steven 

and Lauren 2001).  The agents’ rules for movement are a function of a ‘personality’ or propensity to 

move—based on ten possible goals (toward/away from a location, a friend, an enemy, a road, etc.).  The 

personalities can be in one of ten states, and change when a trigger event (such as detecting an enemy or 

being shot at) occurs.  In all, over 20 factors could be modified for each agent for each of the ten 

personality states, so we are dealing not with ten factors, but with thousands of factors - and this is 

considered a ‘simple’ modeling platform! 

Other examples abound.  Bettonvil and Kleijnen (1997) describe an ecological case study 

involving 281 factors.  Cioppa (2002) examines 22 factors in an investigation of peace-enforcement 

operations.  Even simple queuing systems can be viewed as having a few dozen factors—if the analysts 

look at arrival rates and distributions that change over time, service distributions, and correlations arising 

when service times decrease or servers are added as long lines of customers build up. 

We emphasize that good computer programming avoids fixing the factors at specific numerical 

values within the code; instead the computer reads factor values so that the program can be run for many 

combinations of values.  Of course, the computer should check whether these values are admissible; that is, 

do these combinations fall within the experimental domain?  Such a practice can automatically provide a 

list of potential factors.  Next, the users should confirm whether they indeed wish to experiment with all 
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these factors or whether they wish to a priori fix some factors at nominal (or base) levels.  This type of 

coding helps unfreeze the mindset of users who would otherwise be inclined to focus on only a few factors.   

 

Choice of Performance Measures 

Consider both the number and the types of performance measures.  Most procedures (e.g., MCP, MRP, 

RSM) involve a single quantitative performance measure; the goal is to maximize or minimize the expected 

value of this measure. 

However, in many simulation applications, it is impossible to identify a single measure of 

performance.  For example, textbook examples of simple queuing systems often discuss minimizing the 

average waiting time.  In practice, alternatives include minimizing the proportion of customers that wait 

more than a specified length of time, maximizing the number that are served within a particular length of 

time, improving customer satisfaction by providing information about their projected wait time and 

allowing them to reschedule, minimizing the number of errors in processing customer transactions, 

balancing workloads across servers. Another example is provided by the various performance measures in 

supply chain management; see Kleijnen and Smits (2002). Consequently, it is restrictive to use a DOE 

framework that suggests the appropriate goal of the study should be examining the expected value of a 

single performance measure. 

In theory, a design will be used to generate multiple outputs but they will be accounted for in the 

analysis.  For example, multivariate regression analysis may be applied.  In practice, however, each output 

is usually analyzed individually.  For linear regression analysis, Khuri (1996) proves that this practice 

suffices if all outputs are generated by the same design.  The same design is indeed used when running the 

simulation and observing multiple outputs.  More research is needed for non-linear regression analysis, 

such as Kriging and neural nets (see, e.g., Cressie 1993, Simpson et al. 1997). 

Taguchi’s robust design approach (Taguchi 1987) offers another alternative when multiple 

performance measures exist.  If responses are converted to losses and appropriately scaled, then the 

analysts can construct models of overall expected loss.  However, we prefer constructing separate 

metamodels for each performance characteristic, because it makes it easier to identify why certain scenarios 

have more or less desirable performance than others. 
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A few publications use a mathematical programming framework to analyze multiple simulation 

outputs; that is, one output is minimized whereas the remaining outputs should satisfy prefixed constraints. 

For example, the inventory is minimized while the service percentage meets a pre-specified level. See 

Angün et al. (2002). 

Some problems require only relative answers; that is, the users want to know whether one policy 

is better than another.  For example, in a study on the search for sea mines, the users wanted to know which 

tilt angle of the sonar gives better results, see Kleijnen (1995).  Conversely, some problems require 

absolute answers.  For example, in the same case study, users wanted to know whether the probability of 

mine detection exceeds a certain threshold—before deciding whether to do a mine sweep at all.   

 

Response Surface Complexity   

Assumptions about the metamodel’s complexity are generally broken down into those regarding its 

deterministic and its stochastic components, respectively.  These assumptions often drive the analysis.  The 

standard assumptions in the DOE analysis are that the deterministic component can be fit by a polynomial 

model of the factor levels (perhaps after suitable transformations of the factors or responses) and that the 

stochastic component can be characterized as additive white noise.  The latter assumption means that the 

residuals of the metamodel are Normally IID. In practice, Normality may be explained by the central limit 

theorem.  However, the IID assumption is violated when the noise has larger variances in subspaces of the 

experimental area: variance heterogeneity.  Such heterogeneity is pervasive in simulations.  For example, 

in queuing problems the intrinsic noise increases dramatically as the traffic load approaches 100 percent 

(Cheng and Kleijnen 1999, Kleijnen, Cheng, and Melas 2000). Moreover, common random numbers 

(CRN) are often used for generating output from several simulation scenarios, since CRN can sharpen the 

comparison among systems. CRN, however, violate the independence assumption. 

Good modeling practice means that the analyst should strive to find the simplest metamodel that 

captures the essential characteristics of the system (Occam’s razor).  Therefore, we need a suite of design 

tools: some appropriate for simple response surfaces, other for more complex systems.  We remark that 

simpler metamodels are often easier to justify when only a small number of factors and performance 

measures are examined; yet, interpreting the results may be problematic because the analyst may easily 
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miss important system characteristics.  As we will discuss further in Section 4, some designs provide some 

assessment about the suitability of the estimated metamodel.  In principle, we prefer classifying factors into 

a continuum: those thought to be very important, those that might be important, those that are thought to be 

unimportant but are sampled anyway, and those that we are quite comfortable in ignoring.  Designs that 

sample differently across these classifications make intuitive sense. 

It is becoming increasingly apparent that some systems exhibit highly non-linear behavior.  For 

example, Vinyard and Lucas (2002) made billions of runs and found that chaotic behavior was rampant 

across many performance measures in a simple deterministic model of combat.  Adding a stochastic 

component often mitigated this behavior, but sometimes aggravated some measures of the non-

monotonicity in the performance measures.  Designs that examine only a small number of scenarios are 

unable to reveal such behavior: instead, the analysts may believe they are facing a simulation model with a 

large stochastic component. 

 

Steady State vs. Terminating Simulations  

Terminating simulations are those that run until a specific event has occurred (including the event of 

simulating a fixed amount of time).  Examples include simulating a single day’s operation of a retail 

establishment, or a model of a space satellite that ends when the satellite is destroyed or becomes non-

functional.  Steady-state simulations have no natural termination point, and can keep generating data for 

their analysis.  The simulation type has implications on the design and analysis.  For terminating 

simulations, it may be necessary to censor results if we are simulating rare events; see Kleijnen, Vonk 

Noordegraaf, and Nielen (2001).  Multiple performance measures may again come into play: it may be 

important to know not just who wins the battle, but how long it takes to finish.  For steady-state 

simulations, the warm-up period must be chosen carefully, and the length of the warm-up period affects the 

total time for experimentation. 

 

Inclusion of Simulation-Specific Factors  

The analysts have control over many things during the course of a simulation study—in addition to the 

factor levels they manipulate and the performance measures they collect.  This control includes the 
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maximum run time for terminating simulations; the warm-up period, run length, and batch sizes for steady-

state simulations; common and/or antithetic random number streams; and perhaps the use of other variance 

reduction techniques (VRT) developed for simulation output analysis such as control variates and 

importance sampling.  However, not all designs can easily accommodate these VRT.  For steady-state 

simulations, even the appropriate choice of run length vs. batch size for a fixed budget is not easy without 

some information about the transient component of the simulation (Steiger and Wilson 2001). 

 

2.3  External Concerns and Constraints 

We now discuss issues that often play a major role in the implementation of simulation experiments, 

though they are generally not discussed in the literature. 

 

Sequential vs. One-shot Data Collection   

In real-world experiments, the basic mindset is often that data should be taken simultaneously, unless the 

design is specifically identified as a sequential design.  When samples must be taken sequentially, the 

experiment is viewed as prone to validity problems: the analysts must randomize the order of sampling to 

guard against time-related changes in the experimental environment (such as temperature, humidity, 

consumer confidence, and learning effects), and perform appropriate statistical tests to determine whether 

or not the results have been contaminated.   

However, most simulation experiments are implemented sequentially—even if they are not 

(formally) analyzed that way.  If a small number of design points are explored, this implementation may 

involve the analysts manually changing factor levels. Alternatively, and less prone to data entry errors, an 

input file or series of input files could be generated automatically once a particular design has been chosen.  

These files may be executed sequentially (and efficiently) in batch mode.  Modifying simulations to run in 

parallel over different computers is possible, but not typical. For example, at the supercomputing clusters of 

the Maui High Performance Computing Center and in Woodbridge, Virginia,  parallelization is being used 

effectively.  In many cases, however, ‘parallelization’ results from an analyst manually starting different 

runs (or sets of runs) on a few assorted computers to cut down on the overall time to complete the data 

collection. For example, Vonk Noordegraaf, Nielen, and Kleijnen (2002) use five PCs @ 533 MHZ to 
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finish their 64 scenarios—each scenario replicated twice—in two weeks.  We remark that freely available 

software, such as that used on literally thousands of PCs as part of the search for extraterrestrial intelligence 

(SETI), could be used to facilitate parallel data collection for simulation experiments, but this is not readily 

available for use in either the industrial or academic settings with which we are familiar.   

 

Premature Stopping of the Experiment  

Another issue arises whenever the simulation takes a non-trivial amount of time to run.  The analysts may 

have to terminate their experiment prematurely—because the computer breaks down, the client gets 

impatient, etc.  We have found this to be true of many defense simulation projects.  In such cases, it is 

better for the analyst to have organized the list of scenarios in such a way that the experimental I/O data can 

provide useful information even if that list is curtailed.  For example, suppose a design requires two months 

of CPU time to complete.  Given that the scenarios could be run in any order, the analyst would want to 

avoid having a factor believed by the client to be extremely important held to a single level for all runs 

taken during the first month.  With this view, even non-sequential designs can be implemented sequentially 

in ways that are robust to early termination.  Clearly, sequential or partially sequential designs have this 

characteristic: after one stage of sampling the analysts indicate which configuration(s) should be examined 

next.  Also, some single-stage designs can be viewed as augmentations of simpler designs, so there is a 

natural way to separate the design into two or more parts (see the resolution 4 designs in Section 4).    

 

Data Collection Effort   

The information revolution has improved our ability to run simulations quickly:  those simulations that 

used to take months now take hours; those that used to take hours now take seconds.  This change has 

caused some analysts to add more details to their simulation models: we believe it should spur us to ask 

more from our simulation models.   

Within the current computing environment, the traditional concept of a fixed sampling budget is 

unnecessarily restrictive.  The primary indication of the data collection effort is likely to be the total time 

required to select a design, implement the design, and make the simulation runs.  Working backwards, the 

total run time is not a fixed constraint: it can be cut in half, for example, if the analysts have access to two 
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computers.  The time per run is not typically fixed: different analysts might choose to use different run 

lengths and/or batch sizes; run times might vary across scenarios because some tend to yield fewer events 

in steady-state simulations, or lead to early termination for non-steady-state simulations.  The 

implementation effort is a function of both the time required to generate a design and that associated with 

setting the factor levels accordingly at the beginning of each run.  Implementing a design may be very easy 

if software is available to generate coded factor levels, convert them to original factor levels, and then 

generate input files so the simulation can be run in batch mode.  Conversely, if the analysts must edit and 

recompile the code for each scenario, or make all changes manually through a graphical user interface, then 

the implementation time can surpass the time needed for making runs.  We will discuss design choices in 

Section 4. 

One way of describing this data collection effort has been to determine the time required to 

estimate the metamodel parameters to a certain level of precision.  However, it is difficult to use this time 

in making generic recommendations, since it depends on the underlying (heterogeneous) variability.  In 

recent experience, we have dealt with simulations where run time varies from less than a second to half a 

day per scenario on a single processor. 

A related issue is choosing between a design with more replicates per scenario, and a design with 

more scenarios and fewer replicates—supposing that the total computer time remains the same for the two 

alternative designs.  Replication enables the estimation of possibly non-constant response variances.  If the 

primary goal of the study is finding robust systems or policies, then some replication is essential.  If the 

goal is understanding the system, this may include understanding the variance.  However, if the goal is that 

of understanding or comparing systems and a constant variance can be assumed, then this constant can be 

estimated through the mean squared residuals (MSR)—provided no CRN are used and the metamodel is 

correctly specified.  If classic Ordinary Least Squares (OLS) is applied, it is then better to spend scarce 

computer time to explore more scenarios instead of getting more accurate estimators of the responses for 

fewer scenarios.  Note that a single replicate does yield an unbiased estimator of the response of a specific 

scenario; additional replicates provide more accurate estimates. 
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2.4  Conveying Results Effectively  

The best experiment will come to naught if the results are not communicated properly to the decision-

maker.  We refer back to the three primary goals: developing a basic understanding, identifying robust 

solutions, and comparing systems.  For the first goal, the best analogy might be exploratory data analysis.  

Graphical tools that allow multi-dimensional visualization of the results may be much more helpful than 

equations or tables of numbers.  Tools we have found useful include 3-dimensional rotatable plots and 

trellis plots (Sanchez and Lucas 2002); we have also found that regression trees and Bayesian networks 

have been effective ways of communicating which factors are most influential on the performance 

measures (Gentle 2002, Martinez and Martinez 2002).  However, visualization of simulation results 

remains a challenge at this stage of simulation experimentation.  Tufte (1990) is the seminal reference for 

excellence in graphical presentation; see also Meyer and Johnson (2001) for tools developed specifically 

for visually exploring large amounts of data from simulation experiments with multiple performance 

measures. 

 

3.  Criteria for Evaluating Designs 

Once the simulation analysts know their situation, the question is: now what?  Above we stated that there is 

no single prototypical situation (in terms of the type of question to be asked, or simulation characteristics) 

that analysts might face.  In this light, it is not surprising that we cannot recommend a specific design.  

How, then, should analysts choose a design that is appropriate for their situation?  While we do not have all 

the answers, we do attempt to provide some guidance.  Others have listed desirable attributes for designs 

for experiments with real systems (see, e.g., Box and Draper 1975, Myers and Montgomery 2002).  We 

shall describe some criteria that have been or might be used to evaluate designs in simulation settings, and 

discuss how they may (or may not) apply directly to the issues described earlier. 

 

Number of Scenarios  

In the literature, a major design attribute is the number of scenarios required to enable estimation of 

metamodel parameters.  A design is called saturated if its number of factor combinations (say) n equals the 

number of metamodel parameters, q.  For example, if the metamodel is a first-order polynomial in k factors, 
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then q equals k + 1 (where 1 refers to the grand or overall mean, often denoted by β0), so a saturated design 

means n = k + 1.  Actually, there are several saturated designs for a given metamodel type.  For the first-

order polynomial in k factors, one saturated design changes one factor at a time, whereas another design is 

a fractional factorial (for example, if k is 3, then the latter design is a 2 3 - 1 design; see Box, Hunter, and 

Hunter 1978). To choose among different designs, we consider other quality attributes. 

 

Orthogonality  

If the columns of the design matrix are orthogonal, it is easier to interpret the results from fitting a 

metamodel (e.g., using OLS regression).  Orthogonality has long been a desirable criterion for evaluating 

designs: it reduces the chance of improper interpretation of the results caused by (partial) confounding, it 

simplifies computations, and it improves the statistical efficiency of the estimated specific metamodel 

terms.  However, requiring orthogonality can have limitations as well.  It may be that in reality some factor 

level combinations are not permissible.  For example, in the M/M/1 queue the expected steady-state waiting 

time is infinite if the arrival rate exceeds the service rate. A more complicated application (simulating part 

of the Rotterdam harbor) with exploding waiting times for the original orthogonal design appears in 

Kleijnen, van den Burg, and van der Ham  (1979).  In general, forcing the use of an orthogonal design may 

mean limiting many factors to narrower ranges, or figuring out a way to deal with unstable results at certain 

scenarios.  However, in complex models it may not be possible to know a priori which factor level 

combinations are problematic.  

A design may be orthogonal in the coded factor values (such as -1 and +1) but not in the original 

factor values.  Simulation analysts should be aware of possible scaling effects.  For example, to find the 

most important factors, all factors should be coded; see Bettonvil and Kleijnen (1990). 

Orthogonality may improve statistical efficiency, as we stated above—and detail next. 

 

Efficiency  

The design determines the standard errors for the estimated metamodel parameters.  The DOE literature 

uses several criteria (see Kleijnen 1987, p. 335).  For example, A-optimality means that the sum of these 

standard errors is minimal.  D-optimality considers the whole covariance matrix of the estimated 
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parameters (not only the main diagonal); it means that the determinant of this matrix is minimal.  

G-optimality considers the Mean Squared Error (MSE) of the output predicted through the metamodel (also 

see Koehler and Owen 1996).  Of course, these criteria require strong a priori assumptions on the 

metamodels to be fit to the data and the nature of the response (e.g., homogeneity of variance).  

Consequently, they are of little value when there is substantial uncertainty a priori on the nature of the 

simulation’s output. 

The above criteria certainly can be—and have been—used to evaluate designs proposed for 

analyzing simulation experiments.  However, the classic DOE assumptions (polynomials with white noise) 

are usually violated in simulation. Moreover, focusing on minimizing the number of design points (or 

maximizing the efficiency for a fixed number of design points) may not be enough to insure ‘efficient’ data 

collection, at least for steady-state simulations: does it make sense to worry about using the most efficient 

design if one does not also worry about using the smallest run length to achieve the desired goal?  In short, 

efficiency is most critical when the runs are very time-consuming.  When we are able to gather lots of data 

quickly, other criteria become more relevant. 

 

Space-filling and Bias Protection  

Conceptually, space-filling designs are those that sample not only at the edges of the hypercube that defines 

the experimental area, but also in the interior.  Popular measures for assessing a design’s space-filling 

property include the maximum minimum Euclidean distance between design points (see Johnson et al. 

1990) and—from uniform design theory—the discrepancy (Fang and Wang 1994).  Note that for 

computational reasons, the modified L2 discrepancy is often used as a surrogate for discrepancy (Fang et al. 

2000).  Cioppa (2002) shows that the use of both measures provides a better ability to distinguish among 

candidate designs.  

A design with good space-filling properties means that the analysts do not need to make many 

assumptions about the nature of the response surface.  Such designs also provide flexibility when 

estimating a large number of linear and nonlinear effects, as well as interactions, and so provide general 

bias protection when fitting metamodels of specific forms.  Other designs do not have good space-filling 
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properties, but still protect against specific violations of model complexity assumptions: see the designs of 

resolution 3, 4, and 5 below. 

At this point in time, space-filling designs also provide the best way of exploring surfaces where 

we do not expect to have smooth metamodels—but spikes, thresholds, and other chaotic behavior. That is, 

space-filling designs are particularly useful for fitting nonparametric models, such as locally weighted 

regressions. 

 

Ability to Handle Constraints on Factor-level Combinations  

As we mentioned above, in some situations (for example, chemical experiments) factor values must add up 

to 100 percent.  The classic DOE literature presents mixture designs for these situations. Many designs 

exist for exploring experimental regions (i.e., permissible combinations of design points) that are 

hypercubes or spheres.  In simulation experiments, however, realistic combinations of factor values 

complicate the design process dramatically.  This is an area seriously in need of further research.  Sanchez 

et al. (2001) propose elliptical designs, motivated by observational economic data.  In many queuing 

situations, certain combinations of factor settings give unstable outputs (again see Kleijnen, van den Burg, 

and van Ham 1979, Sanchez et al. 2003).  Until designs that can handle such situations are available, visual 

presentation of the results—and exploratory data analysis—may be the most appropriate ways of 

determining whether or not these situations exist.  

 

Ease of Design Construction and Analysis   

Designs should be easy to construct if they are to be used in practice.  We will use this criterion in deciding 

which designs to recommend in Section 4.  The analysis is easy if computer software is available for many 

platforms.  Regression software is abundant, so the most common analysis tool is readily available and 

need not be discussed further.  Newer surface-fitting models may also be applied in simulation:  Kriging 

assumes covariance-stationary processes for the fitting errors (instead of white noise), and can fit response 

functions with multiple local hilltops.  However, Kriging software for simulation experiments is limited to 

academic software—with its inherent lack of user support.   
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Because Kriging metamodels are not well known in our application area, we list some important 

publications.  Cressie (1993) is a textbook of 900 pages on spatial statistics including Kriging and its origin 

in South Africa, where an engineer called Krige developed his technique while searching for gold.  Sacks et 

al. (1989) is the classic paper on Kriging applied to deterministic simulation models for the design of 

computer chips, cars, airplanes, etc.  Simpson et al. (1997) compare Kriging with Taguchi and neural nets, 

while Giunta and Watson (1998) compare Kriging with polynomial metamodels.  Jin, Chen, and Simpson 

(2000) compare Kriging with polynomial metamodels, splines, and neural nets.  More recently, Van Beers 

and Kleijnen (2002) apply Kriging to stochastic simulation. 

 

4.  Design Toolkit: What Works and When  
 
Now that we have identified several characteristics of simulation settings and designs, it is time to match 

them together.  Consider Figure 1, in which we chart some designs according to two dimensions that 

together describe the simulation setting.  The horizontal axis represents a continuum from simple to 

complex response surfaces.  Since the metamodel complexity depends on both the deterministic and 

stochastic components, there is not a unique mapping.  However, we list some of the assumptions along the 

axis to inform the users about the types of metamodels that can be fit.  The vertical axis loosely represents 

the number of factors.  So, the lower left (near the origin of the figure) represents very simple response 

surfaces with only a handful of factors—that is, the traditional DOE setting with Plackett-Burman designs 

developed in the 1940s, etc. The upper right-hand corner represents very complex response surfaces with 

many factors.  We do not present a comprehensive list of all available designs, but rather describe those 

that seem most promising and are either readily available or fairly easy to generate. 

Recall that we hoped to change the mindset of those who might otherwise begin experimentation 

by focusing on a small number of factors.  Therefore, we advocate using designs displayed near the top of 

this figure.  In this way, the analysts can look broadly across the factors in the simulation study.  The 

analysts can start—from the left-hand side of the figure—making some simplifying assumptions, which 

will tend to reduce the initial data collection effort. (Of course, whenever assumptions are introduced, their 

validity should be checked later on.)  Alternatively, employing CRN or other VRT can make certain 

procedures more efficient, and perhaps allow the analyst to handle more factors—making fewer 
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assumptions—for a given computational effort.  In practice, however, except in rare event simulations VRT 

seldom give dramatic efficiency gains. 

If this initial experiment does not completely address the main goal, then the analysts can use their 

preliminary results to design new experiments (augmenting the current data) in order to focus on the factors 

or regions that appear most interesting.  This focus may mean relaxing metamodel assumptions for the 

short list of factors selected after the initial experiment, while holding the remaining factors to only a few 

configurations; that is, move south-east in Figure 1. 

We now provide brief descriptions of the designs in Figure 1 and their characteristics, along with 

references for further details. 

 

 

Figure 1: Recommended Designs According to the Number of Factors and System Complexity 
Assumptions 
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Gridded or Factorial Designs  

Factorial designs are easy to explain to someone unfamiliar with classic DOE.  A popular type of factorial 

is a 2k design: each of k factors takes on one of two levels, and all resulting combinations are simulated.  

Then it is possible to fit a metamodel including all interactions—not only between pairs of factors, but also 

among triplets, etc. (these models are linear in the factor effects, not the factor levels).   

Considering more complex metamodels (i.e., moving to the right in Figure 1), the analysts may 

use finer grids: three levels per factor result in 3k designs, m levels result in mk designs. When there are 

more than a few factors, the analysts may use different grids for different groups of factors—employing 

finer grids for those factors thought to be important. 

These finer grids enable us to either view nonlinearities in the response surface or test the linearity 

assumption.  Unfortunately, the number of scenarios n grows exponentially as the number of factors k 

increases, so factorial designs are notoriously inefficient when more than a handful of factors are involved.  

Nevertheless, these designs are an important tool since they are easy to generate, plot, and analyze.  Hence, 

whenever individual run times are minimal, the benefit of detailed information about the nature of the 

response surface may easily outweigh the additional computation time relative to the more efficient designs 

we discuss next.  

 

Resolution 3 (R3) and Resolution 4 (R4) Designs  

For metamodels with main effects only, it can be proved that the most efficient designs are R3 designs—

provided the white noise assumption holds.  R3 designs are 2k - p designs if k + 1 is a multiple of four; 

otherwise R3 designs are tabulated as Plackett-Burman designs.  See any DOE textbook for details (e.g., 

Box, Hunter and Hunter 1978).  

If interactions are assumed to be present, but the users are mainly interested in estimating first-

order effects, then  R4 designs are appropriate.  R4 designs give unbiased estimators of main effects—even 

if two-factor interactions are present.  These designs can be easily constructed through the fold-over 

procedure: after executing the R3 design, the analysts run the mirror design that replaces each plus sign in a 

specific factor's column by a minus sign; and each minus by a plus sign.  In other words, the analysts can 
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proceed in two stages: first run an R3 design; then augment it to an R4 design. (See also the RSM designs 

in Donohue, Houck, and Myers 1993.) 

Even if the white noise assumption does not hold, classic designs do enable the analysts to 

estimate the metamodel parameters—although not necessarily with minimum standard errors.  If we 

account for the analysts’ time and energy, then these designs seem acceptable.  Clearly, R3 designs give 

smaller standard errors for the estimated first-order effects than the popular practice of changing one factor 

at a time: the former designs use all scenarios to estimate all effects, whereas the latter designs use only 

two scenarios per effect. 

 

Resolution 5 (R5) Designs  

If users are also interested in the individual two-factor interactions, then a R5 design is needed.  Many 2k - p 

designs of the R5 type are not saturated.  Saturated designs include Rechtschaffner (1967)'s designs, which 

are discussed by Kleijnen (1987, pp. 310-311) and applied by Kleijnen and Pala (1999).  A R5 design 

requires O(k2) factor combinations, so this design is less attractive if individual runs are time-consuming.  

Sometimes, however, the R4 design suggests that certain factors are unimportant so the R5 design can be 

limited to fewer factors.  The 2 k - p designs are relatively easy to construct or can be looked up in tables; see 

Box et al. (1978), Kleijnen (1974-1975, 1987), and Myers and Montgomery (1995). 

Fractional factorial designs (including R3, R4, and R5 designs) meet classic optimality criteria 

such as D-optimality for specific metamodels.  Other designs that satisfy these criteria are derived in 

optimal design theory, pioneered by Fedorov and Kiefer; see Pukelsheim (1993).  These ‘optimal’ designs 

typically lack the simple geometric patterns of classic designs, and are too complicated for most 

practitioners.  

 

Central Composite Designs (CCD) 

A second-order metamodel includes purely quadratic effects so that non-monotonic response functions can 

be handled.  Best known are CCD, which have five values per factor. These values are coded as -1, +1, 0,   

-c, +c with c ≠ 1 and c ≠ 0.  It is possible to determine an optimal value of c if the white noise assumption 

holds.  However, since this assumption does not hold for most simulation experiments, we do not worry too 
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much about the choice of c—except to suggest the analysts choose an intermediate value for better space-

filling.  Details on CCD can be found in any DOE textbook. 

Actually, estimation of quadratic effects requires no more than three factor levels, so to save 

computer time the analysts may again use saturated designs, which implies n = 1 + k + k(k -1)/2 + k.  

Simple saturated designs are applied by Kleijnen and Pala (1999). 

 

Sequential Bifurcation (SB)  

In practice, there are situations with a large number of factors but only a small number of important factors. 

Moreover, the users may be able to specify the sign (or direction) of each potential main effect, and the 

metamodel is a simple polynomial with main effects - possibly augmented with two-factor interactions. In 

those situations, the individual factors can be aggregated into groups such that individual main effects will 

not cancel out. Group screening can be very effective at identifying the important factors. The most 

efficient group screening procedure seems to be SB.  For example, in an ecological case study, 281 factors 

are screened after only 77 factor combinations are simulated.  If interactions may be important, SB still 

gives unbiased estimators of the main effects—provided the number of combinations is doubled (similar to 

the fold-over principle for R3 and R4 designs discussed above). SB is also robust to premature termination 

of the experiment:  SB can be stopped at any stage, providing upper bounds for aggregated (not individual) 

effects.  See Bettonvil and Kleijnen (1997) for details, and Kleijnen (1998) for additional references.  

Cheng (1997) expands SB to output responses that are stochastic. 

Other screening techniques with less restrictive metamodels are discussed by Campolongo, Kleijnen, 

and Andres (2000), Holcomb and Carlyle (2002), Holcomb, Montgomery, and Carlyle (2003), Lin (1995), 

and Trocine and Malone (2001).  Their performance relative to SB needs further research. 

 

Latin Hypercube Sampling (LHS) 

For situations involving a relatively large number of factors, McKay, Beckman, and Conover (1979) 

proposed LHS: let n still define the number of scenarios; define n levels per factor; for each scenario, 

sample the factor values without replacement (giving random permutations of factor levels). LHS is so 
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straightforward that it is incorporated in popular add-on software (such as @Risk) for spreadsheet 

simulation; see Sukiyama and Chow (1997).  

LHS designs have good space-filling properties—particularly if replicates are taken—so they are 

efficient ways of exploring unknown, but potentially complicated response surfaces with many quantitative 

factors.  For LHS in Kriging—which assumes smooth metamodels with many local hilltops—we refer the 

reader to Koehler and Owen (1996), Morris and Mitchell (1995), Simpson, Lin and Chen (2001), and also 

Osio and Amon (1996)’s work on multistage Bayesian surrogates methodology (MBSM).   

There are numerous variants of basic LHS.  Recently, Ye (1998) developed an algorithm for 

orthogonal LHS, assuming a linear metamodel.  Cioppa (2002) extended the number of factors that can be 

examined in orthogonal LHS within a fixed number of runs.  Moreover, he found that by giving up a small 

amount of orthogonality (i.e., pairwise correlations between the design columns of less than 0.03), the 

analysts can dramatically increase the space-filling property of these designs.  His LHS designs are 

tabulated, thus easily used. 

 

Frequency-based Designs   

For quantitative factors, a frequency-based approach makes each factor oscillate sinusoidally between its 

lowest and highest value—at a unique and carefully chosen frequency.  If the simulation model is coded so 

that factors can be oscillated during the course of a simulation run (called the signal run), then comparisons 

can be made to the noise run where all factors are held at nominal levels.  This approach has been 

advocated as a screening tool for identifying important metamodel terms (Schruben and Cogliano 1987, 

Sanchez and Buss 1987).   

More recently, frequency-based designs have been used to externally set factor levels for 

scenarios, that is, factor levels remain constant during the course of the simulation run—but they change 

from run to run (Lucas et al. 2002, Wu 2002).  These designs have reasonably good space-filling properties, 

and there is a natural gradation in the granularity of sampling: factors oscillated at low frequencies are 

sampled at many levels, whereas factors oscillated at high frequencies are sampled at fewer levels.  This 

property may help the analysts design an experiment to be robust to early termination, for example, by 

choosing higher oscillation frequencies for those factors believed a priori  to be most important to 
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investigate.  By carefully choosing the oscillation frequencies, it is possible to use the results to fit second 

and third order metamodels.  The designs are relatively easy to construct and to implement (see Jacobson, 

Buss, and Schruben 1991, Morrice and Bardhan 1995, Saltelli, Tarantola, and Chan 1999, or Sanchez and 

Lucas 2002). 

 

Combined or Crossed Designs 

Selecting designs for finding robust solutions—following Taguchi’s approach—falls naturally into the 

upper middle portion of Figure 1.  While there may be a large number of factors, the analysts are interested 

in a metamodel that captures the impact of the decision factors only.  So their metamodel—while it may be 

complex—does not require estimation of all factor and interaction effects.  Actually, the noise factors enter 

into the metamodel via their impact on the variability of the response for a particular combination of 

decision factor levels.  This clear division of factors suggests that the analysts sample the two sets 

differently—for example, by combining (crossing) a 3k or a CCD for the decision factors with a lower 

resolution design for the noise factors—as we now show.   

Taguchi (1987) proposes a particular class of orthogonal designs, but these designs are for factory 

experiments and are limited to main-effects models that we find too restrictive for simulation environments.  

Ramberg et al. (1991) use a sequential approach, beginning with a 2 k – p  augmented with a center point for 

the decision factors, and recommend a saturated or nearly saturated factorial for the noise factors.  Moeeni, 

Sanchez and Vakharia (1996) use three levels (varied across runs) per decision factor and frequency-based 

oscillation (varied within a run) for 35 noise factors.  Cabrera-Rios, Mount-Campbell, and Irani (2002, p. 

225) propose three levels per decision factor and two levels per environmental factor.  If the number of 

decision factors is not too large, then it is efficient to cross a CCD for the decision factors with LHS for the 

noise factors. If the number of decision factors is large, then orthogonal or nearly orthogonal LHS may be 

good choices for the decision factors.  In short, these designs are easy to generate, and the two sub-designs 

can be chosen to achieve the characteristics (space-filling, orthogonality, efficiency) that are most pertinent 

to the problem at hand. 

The above discussion shows how noise factors can be exploited in terms of designing efficient 

experiments to identify robust solutions.  Even though it is often efficient to use a crossed design in order to 
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search for robust solutions, such a design is not necessary.  Combined designs maintain orthogonality 

between the decision and noise factors, and retain the properties of the separate designs.   

The decision/noise factor classification is not the only situation where combined and crossed designs 

can be exploited.  For example, Lucas, Bankes, and Vye (1997) give an example of group screening within 

a fractional factorial design crossed with LHS. Also, Lucas et al. (2002) discuss the benefits of combining 

multiple designs after classifying the factors into several groups based on their anticipated impact.  This 

allows the analyst much more flexibility than simply putting each factor into (or leaving it out of) the 

experiment. 

 

Summary 

We have presented several design alternatives for simulation experiments involving either a few or many 

factors.  If runs are extremely time-consuming, then the analysts can reduce the computational effort by 

making some (hopefully, reasonable) assumptions about the nature of the response surface.  These 

assumptions can be checked after the runs are completed, as we shall describe in Section 5. We contrast 

this approach to arbitrarily limiting the number of factors: if the analysts change only a few factors while 

keeping all other factors constant, then the conclusions of the simulation study may be extremely limited. 

We remark that we have not attempted to list all the designs that have been proposed for 

simulation experiments.  For example, we have not placed any simulation optimization methods in  

Figure 1—although we can view ‘optimization’ as a means of comparing systems under very specific 

conditions.  Our goal was to suggest some designs that analysts can readily use.  

 

5. Checking the Assumptions 

Whichever design is used, sound practice means that the analysts check their assumptions.  If the analysts 

selected a design from the right-hand-side of Figure 1, then they made very few assumptions about the 

nature of the response surface.  In the process of fitting a metamodel, the analysts determine what (if any) 

assumptions are reasonable.  However, if they started in the upper left corner of Figure 1, then the 

experiment was likely used to screen the factors and identify a short list as the focus of further 

experimentation.  If so, the analysts are likely to make fewer assumptions during the next stages of 
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experimentation.  If they started from the lower left (as traditional DOE does), then it may be essential to 

confirm that the resulting metamodel is sufficient—or to augment it appropriately. 

One check has the signs of the estimated effects evaluated by ‘experts’; that is, experts on the real 

system being simulated. A simple example is: does a decreased traffic rate (resulting from adding or 

training servers) indeed reduce the average waiting time?  Another example is the case study by Kleijnen 

(1995) on a sonar simulation experiment: naval experts evaluated the signs of the metamodel effects; 

because all these signs were accepted, the underlying simulation model was considered to be ‘valid’. In 

general, checking the signs may be particularly applicable when the goal of the simulation study is general 

understanding rather than prediction, as for the agent-based models discussed earlier. We, however, remark 

that sometimes intuition is wrong and needs to be challenged.  For example, Smith and Sanchez (2003) 

describe a forecasting project where the model of losses (incurred for certain groups of loans) had the 

‘wrong’ signs.  Examination of the detailed files, however, confirmed that their patterns differed from the 

vast majority of loans and revealed why, so that the model ended up providing new—and valid—insights to 

the experts. Another example is the ecological case study in which Bettonvil and Kleijnen (1997) employ 

SB: the resulting short list of factors included some that the ecological experts had not expected to have 

important effects.   

Another check compares the metamodel predictions to the simulation outputs for one or more new 

scenarios (which might be selected through a small LHS design).  If the results are close, the metamodel is 

considered acceptable (see any textbook on linear models or forecasting; also Kleijnen, Feelders, and 

Cheng 1998).  Kleijnen and Sargent (2000) discuss how to use output from initial simulation experiments 

to test the metamodel constructed from other scenarios in subsequent experiments.  They refer to this as 

validating metamodels, not to be confused with validating a simulation model. 

The assumption of NIID errors can be examined via residual analysis (if OLS is used to fit the 

metamodels), or by taking additional replications at a few design points.  Tuniz and Batmaz (2000) 

investigated procedures for validating this and other assumptions for least-squares metamodel estimation. 

Note that higher-order interactions are notoriously difficult to explain to the users; nevertheless, 

traditional DOE routinely estimates and tests these interactions.  One solution transforms the original inputs 

or outputs of the simulation model.  We give two generic examples.  First, logarithmic transformations of 



 32

inputs and outputs may help in queuing problems; see Irizarry, Wilson, and Trevino (2001) and Kleijnen 

and Van Groenendaal (1992, pp. 159-162).  Second, replacing two individual factors by their ratio may 

help in queuing where the arrival and the service rates are combined into the traffic rate; in combat models 

the relative strength may provide a better explanation than the individual absolute strengths of the two 

combatants.  However, when multiple performance measures are collected, it may be difficult or impossible 

to transform individual factors so that all response surfaces are simple.  If so, it may be best to transform 

certain responses in order to fit simpler models in the transformed space, and then back-transform in order 

to present the results to the decision-maker. 

Even with careful thought and planning, it is rare that the results from a single experiment are so 

comprehensive that the simulation model and its metamodel(s) need never be revisited.  In practice, results 

from simulation experiments often need to be modified; that is, expanded or thrown out to obtain more 

detailed information on the simulation performance for a smaller region of the factor combinations. These 

modifications are determined in large part by the expertise of the simulation analysts.  This points out a 

need for semi-automatic methods for suggesting design refinements, which can be tricky.  For example, 

suppose one has built a response surface model that accurately characterizes simulation performance over a 

particular region of the factor space.  Over time, however, the external environment changes so that the 

combinations of factor levels initially studied are no longer of primary interest—so some additional 

experiments are conducted.  The question then is: when is it appropriate to use a global metamodel (with 

data from all experiments) instead of focusing on several local metamodels (over more restricted ranges)?  

This question merits further research. 

 

6.  Conclusions and Future Research  

Our primary goal in writing this paper is to help change the mindset of simulation practitioners and 

researchers:  we believe practitioners should view DOE as an integral part of any simulation study, while 

researchers should move beyond viewing the simulation setting merely as an application area for traditional 

DOE methods.  We advocate thinking first about the three basic goals: understanding a system, finding 

robust solutions, or comparing systems.  We also recommend that simulation analysts select a design 
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suitable for the context; this selection typically means that a large number of factors—and potentially 

complex response surfaces—need to be considered.  We also provide guidance on the appropriate use of  a 

variety of easy designs. 

In this paper, we have listed many problems that require more investigation, resulting in a 

research agenda for the design of simulation experiments.  For example, it is important to further 

investigate sequential design and analysis since most computer architectures simulate the scenarios and 

replicates one after the other.  The search for robust instead of ‘optimal’ solutions requires further research.  

Further work is needed to better match types of metamodels (and appropriate designs for developing these 

metamodels) to the characteristics of the simulation setting. Screening designs deserve further investigation 

and application, particularly if they can be incorporated into other designs to reduce the large number of 

factors at the start of the investigation.  Non-smooth metamodels are needed to represent spikes, thresholds, 

and chaotic behavior; appropriate designs require more research and software.  Multiple outputs might need 

special designs and analyses for non-linear regression metamodels—used in Kriging and neural nets—and 

for evaluating or comparing systems.  In addition, approaches that deal with constraints on factor level 

combinations and/or unstable system configurations are critical if we are to explore large regions of the 

factor space. 

In addition to the research, appropriate design and analysis methods must be readily available in 

software.  While gains have been made in recent years, as in Kriging and visualization software, there is 

still much room for improvement.   
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